

COMMONWEALTH of VIRGINIA

Karen Shelton, MD
State Health Commissioner

Department of Health
P O BOX 2448
RICHMOND, VA 23218

TTY 7-1-1 OR
1-800-828-1120

January 7, 2026
Scott County, VA
Suspected Pediatric Cancer Cluster Investigation Report
By Virginia Cancer Registry

Introduction

In April 2025, a group of Scott County residents contacted the Lenowisco Health District (comprising the counties of Lee, Wise, and Scott and the City of Norton) expressing concern about the number of childhood cancer cases in their community. After consultation with the Virginia Cancer Registry (VCR), the Lenowisco Health District conducted a community survey to collect preliminary information to begin the investigation process.

The survey was launched on April 28, 2025, and conducted through July 31, 2025, for parents or guardians living within Scott County or within 15 miles of its boundary, with children aged 19 years or younger. Respondents were asked to report cancer diagnoses occurring in the last ten years, between 2015 and 2025.

A total of 24 responses were received from Scott, Lee, and Wise Counties, with approximately half from Scott County residents. Collected data included demographic details (e.g., name, race, ethnicity, date of birth, residential history) and cancer information (e.g., diagnosis type, treatment facility). Several respondents indicated that their children had lived outside of Scott County or outside of Virginia before diagnosis. Most reported receiving treatment at St. Jude Children's Research Hospital, Memphis, Tennessee.

Understanding Cancer

What is cancer?

According to the Centers for Disease Control and Prevention (CDC), cancer is not one disease, but rather many different diseases with different causal mechanisms that share a similar characteristic: uncontrollable cell growth and division.¹ Cancers, as a group, are very common. Cancers are the second leading cause of death in the United States and Virginia, exceeded only by diseases of the heart and circulatory system. In children ages 1-19, cancers are the fourth leading cause of death.² Cancer is common, affecting about one in three people in their lifetime,

or one in 285 children before age 20 nationally. It is not unusual for several people in a relatively small area to develop cancer around the same time.

What causes cancers to form in children and adolescents?

According to the American Cancer Society, childhood cancers are usually caused by random acquired mutations (gene changes) that occur early in development, sometimes even before birth. Given this, there are not many known risk factors or ways to prevent childhood cancers. A few potential risk factors for developing childhood cancer include,

- Family history, which may result in inherited genetic changes
- Genetic changes early in development
- Environmental exposures—including polluted air, soil and water, pesticide, ionizing radiation exposure, secondhand smoke etc.

Cancer Development and Latency

Cancers also differ with respect to latency, or the time between exposure to one or more cancer-causing agents and the development of cancer. Cancers in adults commonly take 10 to 30 years or more to develop to the point of being detectable. In children, the time from exposure to cancer development is shorter, 1-10 years.³ When looking for the cause of cancer, one must consider exposures that took place long enough before the cancer was diagnosed. Regarding cancer in children, this includes possible exposures the parents may have had prior to conception and during pregnancy.⁴

What is a Cancer Cluster?

According to CDC's *Guidelines for Examining Unusual Patterns of Cancer and Environmental Concerns*, updated in 2022 after the passage of Trevor's Law,¹ a cancer cluster is defined as a greater than expected number of the ***same or etiologically related cancer*** cases that occur within a group of people in a geographic area over a defined period of time. To be a cancer cluster, a group of cancer cases must meet all of the following criteria:

- **A greater than expected number:** When the number of observed cases is greater than typically observed in a similar setting.
- **Of the same or etiologically related cancer cases:** Cases are of the same type, are within a family of tumors (e.g., Ewing's family of tumors), or have a known or suggested link to the same specific environmental or chemical exposures. It is possible to consider multiple cancer types when such a known exposure (e.g., radiation or a specific chemical) is linked to more than one cancer type or when more than one contaminant or exposure type has been identified.
- **Within a group of people:** The population in which the cancer cases are occurring is defined by its demographic factors (e.g., race, ethnicity, age, and sex).

- **In a geographic area:** The geographic area may be based upon pre-existing geopolitical boundaries (e.g., census tract, county, or ZIP code/ZIP code tabulation area).
- **Over a period of time:** The time frame used to establish the beginning and end dates for analysis. The time period chosen for analysis will affect both the total cases observed and the calculation of the expected incidence of cancer in the population.

Until these parameters are met, the group of cancer cases is often referred to as a **suspected cancer cluster**.

When investigations of a suspected cancer cluster are undertaken, there are three main possible outcomes:

- In most cases, an investigation will show that the suspected cluster is not a true cancer cluster.
- Less often, an investigation finds a true cancer cluster, but no cause can be found.
- Rarely, an investigation finds a cancer cluster where the cause can be determined.

In a scientific review of over 500 cancer cluster investigations done over 20 years, only about 1 in 8 found a true increase in cancer rates, and in only one case was a clear cause for the increase found.

Who conducts cancer cluster investigations?

The VCR conducts cancer cluster investigations, in close partnership with the relevant local health district, when a request is made by a local resident or local health district. The VCR also conducts routine cancer surveillance to monitor trends over time, including any increases in cancer rates. The VCR also collaborates with the Virginia Department of Health Environmental Public Health Tracking (EPHT) Program and Public Health Toxicology Program to address environmental concerns when needed.

At the initiation of the Scott County cancer cluster investigation, VCR alerted the CDC through their routine program updates and has engaged CDC for technical assistance to support effective communication and collaboration across partners and the community. The Agency for Toxic Substances and Disease Registry (ATSDR) was also made aware of the Scott County cancer cluster investigation from a community member through their petition program. VDH would request technical assistance from ATSDR regarding environmental concerns if data point to an indication of a cluster or unusual pattern of cancer.

Methodology

Cancer Case Ascertainment

The Virginia Cancer Registry (VCR) collects statewide data on all cancer cases diagnosed or treated in Virginia and Virginia residents who receive care out of state. Under the Code of Virginia [§ 32.1-70](#) and further detailed in Administrative Code [12VAC5-90-180](#), hospitals, clinics, and pathology laboratories must report all cases of malignant tumors or cancers within six months of diagnosis. Virginia also exchanges data with more than 40 other state cancer registries to receive information about residents receiving care out of state.

To determine who may be affected when citizens report a suspected cancer cluster to the VCR, specific patient-level information must be collected and reviewed. Since Scott County borders Tennessee, many residents seek cancer diagnosis and treatment in Tennessee. For this investigation, VCR contacted the Tennessee Cancer Registry to request records of Virginia residents diagnosed with cancer—particularly those diagnosed and treated at St. Jude Hospital, Tennessee since 2015, aligning with the survey timeline. These cases were incorporated into VCR's database for verification.

Geography, Population, and Time Frame

Given that the majority of cases were reported in Scott County, the geographic analysis was restricted to Scott County. Therefore, this evaluation of childhood cancer incidence included the entire childhood population (ages 0-19) residing in Scott County, in the ten-year period of 2014 through 2023. Because cancer registry data are incomplete statewide for 2024–2025, only cases from 2014–2023 (10 years) were included in the analysis. This lag is in line with other cancer registries across the nation due to the time it takes for cases to be reported (up to six months), verifying cases, cleaning and quality control steps, and the exchange of data with neighboring states, which are standards set by the CDC and the North American Association for Central Cancer Registries (NAACCR). The VCR remains committed to addressing 2024 and 2025 cases when data reach at least 90% completeness (expected in early 2026 and 2027, respectively). Population estimates for the locality were determined by using SEER*Stat Software population data from the National Cancer Institute. On average, the population of children ages 0-19 during this ten-year period in Scott County was 4,355.

Cancers to be Evaluated

Cancer types evaluated included the following cancers that were reported by Scott County in the community survey and in the VCR from 2014-2023: bone and joints, leukemia, non-Hodgkin's lymphoma, other endocrine including thymus, testis, and thyroid.

Data Analysis

The VCR epidemiologist and a certified oncology data specialist (a professional who collects and analyzes cancer data from electronic medical records) on staff reviewed each patient's diagnostic summary in the registry. These data included cancer site, malignancy and metastasis details, staging information, physician notes, and pathology reports* to verify the primary cancer site, which is where the cancer originated from and not to where it has spread. Verifying individual cases is a critical step in cancer cluster investigations. This step ensures that the VCR uses accurate cancer diagnoses, including timing, for cancer cluster investigations. For example, if a reported bone cancer was metastasized (i.e., spread) from an endocrine cancer (e.g., adrenal), then this case would be classified as other endocrine cancer for investigation. Additionally, if a patient had a recurrent diagnosis of a previously diagnosed cancer, the first or original date of diagnosis would be used in the analysis.⁵

The VCR applied the Standardized Incidence Ratio (SIR) test—recommended by the CDC¹—to each pediatric cancer site (type) in Scott County, combining all races and sexes, except for testicular cancer, which was calculated among males. Cancer sites are examined separately and are only combined when a strong environmental risk or other underlying cause has been identified to link them, in line with the 2022 CDC Guidelines. The SIR test is used to evaluate a potential cancer cluster by comparing the number of observed cases in a specific population, Scott County for this analysis, to the number of cases expected based on similar and broader population data, the Commonwealth of Virginia in this case.

The observed and expected numbers are evaluated by interpreting the ratio of these numbers. If the observed number of cases equals the expected number of cases, the SIR will equal 1.0. A SIR less than 1.0 indicates that fewer cases are observed than expected. A SIR greater than 1.0 indicates that more cases than expected are observed. Random fluctuations may account for some SIRs being higher or lower than 1.0. The statistical significance of deviations from the SIR equal to 1.0 was evaluated using a 95% confidence interval (CI). The 95% CI was used to evaluate the probability that the SIR may be greater or less than 1.0 due to chance alone and was based on the Poisson distribution. If the confidence interval includes 1.0, then the estimated SIR is not considered to be statistically significantly different than 1.0.

Results

Survey Findings

* Cancer site: refers to the cancer type where it originated

Malignancy: refers to cancers that divide without control and can spread to nearby tissues

Metastasis: refers to whether the cancer spread from its original site

Staging: refers to whether the cancer is early or late in its growth

After limiting the geographic area to Scott County, 12 cases were reported in the survey conducted by Lenowisco Health District. Among the 12 cases:

- The majority (75%) were diagnosed prior to 2024.
- 5 were successfully matched with official registry records, and met the criteria for time frame being examined (2014-2023).
- 3 were diagnosed in 2024 and matched with official registry records, but were not included due to incomplete full-year data.
- 1 case (diagnosed in 2025) could not yet be verified due to normal reporting lag.
- 3 cases (reported with different cancer types diagnosed prior to 2020) could not be verified with registry records and, therefore, were not included. Two of these cases also reported previous residential histories in a non-bordering state.
- 75% were male.
- The age at diagnosis ranged from <1 to 14, with the majority (75%) being 5 years old or younger.
- 4 self-reported a general family history of cancer, and 2 self-reported positive genetic findings specific to the cancers under review.

Analysis Findings

In addition to the 5 matched cases reported in the survey, 3 additional cases were reported to the VCR who met the criteria for time frame (2014-2023), population, and geography. Therefore, the analysis included a combined total of 8 cases. Below is a table presenting the SIR results for each cancer site. Each cancer site was analyzed separately and could not be combined as no strong environmental risks have been identified to link them. This is discussed further in the Environmental Concerns section.

Cancer Site	Observed Number of Cases in Scott County	Expected Cancer Cases*	SIR	95% C.I.
Bone and Joints	2	1	4.47	(0.42, 12.82)
Leukemia	2	2	1.21	(0.11, 3.45)
Non-Hodgkin's Lymphoma	1	1	1.95	(0, 7.65)
Thyroid	1	1	2.38	(0, 9.32)
Testis	1	1	5.38	(0, 21.28)
Other Endocrine	1	1	5.36	(0, 21.00)
Total	8			

* Rounded up to the nearest integer

All confidence intervals include “1” which indicates no statistically significant excess for any cancer site, meaning that the number of cases reported for each cancer site was not higher than expected. Due to the small number of observed and expected cases, the SIR is not recommended to be used as statistical estimates may not be stable or precise, which is illustrated by the wide confidence intervals. To enhance verification, the Fisher’s Exact test was applied. This test is commonly used to analyze categorical data when there are fewer than five observations. Below are the results from Fisher’s Exact Test. All p-values exceed 0.05, which suggests that pediatric cancer rates in Scott County between 2014-2023 do not differ significantly from those observed statewide.

Fisher's Exact Test		
Cancer Site	Odds Ratio	p-value
Bone and Joints	4.47	0.08
Leukemia	1.23	0.68
Non-Hodgkin's Lymphoma	1.95	0.40
Thyroid	2.37	0.34
Testis	5.38	0.17
Other Endocrine	5.36	0.17

Environmental Concerns

The VCR team, in consultation with VDH staff with backgrounds in cancer control, environmental epidemiology, and toxicology, explored common environmental risk factors for the reported childhood cancer types to determine if any would warrant grouping related cancer sites for additional statistical analysis. Based on available literature, the team recommended potentially combining pediatric leukemia and central nervous system (CNS) cancer types, given studies showing positive associations with similar environmental exposure (prenatal and postnatal) risk factors. However, no pediatric CNS cancer type cases were reported to the registry from 2014-2023, so it was not possible to combine these cancer types. However, the team will follow the literature and reconsider grouping any cancer types as appropriate.

To determine if cases were concentrated in particular geographic areas, addresses of cases were mapped. Mapping was performed to help the environmental epidemiology and toxicology team understand the general geographic distribution of cancer cases, and to potentially help with generating hypotheses for a pathway of environmental exposure. Previous addresses in Scott County were mapped, if available, as previous address would be better than current address to gauge potential environmental exposures prior to diagnosis. To protect privacy of individuals, this map is not included in this report; however, reported cases were not concentrated in any area based on residency location. While mapping may be helpful to hypothesize if an environmental exposure may explain any cases whose residences were close in proximity, there are limitations.

For example, mapping would not explain what a child may have been exposed to or the length or level of exposure, and some cancer cases will appear in close proximity by chance alone. Additionally, families may move, which may not reflect potential exposures that have occurred.

Community members have expressed concerns about environmental exposures. These concerns are varied, but mostly relate to radon, drinking water, and/or industrial sites. VCR, in partnership with VDH staff, carefully reviewed these concerns. The team's review of the environmental concerns included consulting with Virginia Department of Environmental Quality. Technical assistance from federal agencies, such as the CDC and/or the Agency for Toxic Substances and Disease Registry (ATSDR), regarding environmental concerns, would only be requested should data indicate that there is a cluster or unusual pattern of cancer. A summary of the concerns, along with background information and resources, is outlined below.

Radon

Radon is an odorless and invisible radioactive gas that can build up in homes and buildings. According to the Environmental Protection Agency (EPA), exposure to radon is the second leading cause for lung cancer after smoking. Radon is the most common cause of lung cancer among non-smokers.⁶

There is limited information regarding childhood cancers and radon. A [2012 review](#) of ecological and case-control studies to date found an association between environmental radon exposure and elevated childhood leukemia incidence, but noted more evidence is required before this assumption may be confirmed with certainty.⁷ A [2024 ecological study](#) across 14 states (the largest U.S. study of radon exposure and childhood cancer to date) observed county-level childhood leukemia risk was associated with radon exposure.⁸ However, findings from the literature warrant further investigation using individual-level study designs since ecological studies may be prone to bias when examining individual-level outcomes. In addition, the National Cancer Institute acknowledges the suggestion of an association between radon exposure and leukemia in children, but describes the available evidence as not conclusive.⁹

In Virginia, indoor air test results from residential homes/buildings can be voluntarily reported to VDH. A map visual of results received from 2016-2024 is available at [Radon Testing Results](#). Scott County, along with several localities in Southwest and Northwest areas of Virginia, has historically had higher indoor radon results compared to other areas of Virginia.

Raising awareness about the risks of radon can help reduce potential health impacts of radon exposure, particularly for lung cancer. Even in the absence of a cancer cluster concern, VDH recommends that individuals test their homes for radon every two to three years. The only way to know if radon is present at elevated levels in indoor air is to [test for it](#). VDH and EPA recommend that homeowners fix their home when the level in indoor air exceeds 4 pCi/L

(picocuries per liter). The EPA also recommends considering taking action in a home when radon levels are between 2 pCi/L and 4 pCi/L.

In Virginia, schools are required to test for radon (see [Va Code § 22.1-138](#)). VDH and EPA recommend that schools take action to reduce radon when the level exceeds 4 pCi/L (picocuries per liter). Due to the majority of cases being diagnosed at age 5 or younger, school radon results were not reviewed at this time.

If help is needed interpreting any results, the [VDH Radon Program](#) is available to assist (radon@vdh.virginia.gov or 804-864-8161). The Radon Program also stocks a limited number of do-it-yourself test kits that can be shipped out. Requests for test kits can be made by contacting this program.

Drinking Water (Public)

Most Scott County residents receive public drinking water through the Scott County Public Service Authority (SCPSA). As part of SCPSA, there are 13 active public community drinking water systems in Scott County. These systems collectively serve approximately 15,880 people. This is an estimate based on each water system's count or calculation.

Public drinking water systems are federally regulated, and these systems are required to be tested for various contaminants (e.g., microorganisms, disinfectants, disinfection byproducts) and reported on a routine and regular basis. At this time, all community water systems in Scott County comply with federal and state requirements. Test results are available through the VDH [Drinking Water Viewer](#). An overview of the information available can be found in [Drinking Water Viewer Basics](#). Over the last five years, community water systems in Scott County had only one maximum contaminant level (MCL) exceedance which occurred for haloacetic acids, a group of disinfection byproducts formed when disinfectants react with natural matter. This exceedance was observed in the 4th quarter of 2022 for the Daniel Boone/Scott Co Public Service Authority. An isolated exceedance of an MCL does not necessarily mean there is a public health risk. MCLs are set by the U.S. Environmental Protection Agency (EPA) with a significant margin of safety to protect health over a lifetime of exposure.

The VDH Office of Drinking Water Abingdon Field Office can provide information and answer questions about each community water system (ODWFieldOffice1@vdh.virginia.gov or 276-676-5650).

Drinking Water (Private Wells)

As part of this initial review, a few of the cases included in the analysis reported using a private water source for drinking water in the community survey.

Per [Virginia Private Well Regulations](#), property owners are required to obtain a private well construction permit from their Local Health Department prior to construction to ensure a well can meet the minimum location requirements. A private well cannot be placed into operation until a written inspection statement has been issued by the Local Health Department showing the well was installed in accordance with the permit and that the well complies with applicable sampling requirements. VDH only requires bacteriological sample results for a newly constructed private well prior to issuing an inspection statement.

Ongoing sampling of private wells is completed at the discretion of the property owner. While not required, and regardless of whether a well is existing or brand new, VDH always encourages private well owners to test their drinking water. VDH recommends annual testing for bacteria and nitrates. Testing for other contaminants would be based on circumstances specific to the well and to the property (see [VDH private well program](#) for additional information).

For any community members in or near Scott County who may have concerns about their private well water quality, several resources are available:

- [Virginia Household Water Quality Program](#). Led by Virginia Tech, this program provides many resources for homeowners, including information on how to test private drinking water quality, what to test (as testing guidance may differ based on any previous water testing history), and how to interpret results. Homeowners can also [request to have a sampling clinic](#) in their area. The [Be Well Informed Tool](#) is also available to help families interpret any testing results.
- [VDH Local Health Department](#). Local Health Department staff can assist residents with general questions regarding requirements for private wells and can provide contact information for private water testing laboratories.
- [VDH Division of Onsite Water and Wastewater Services](#) – Staff in the Division of Onsite Water and Wastewater Services can assist residents with interpretation of private well water results. Staff can be reached at onsite@vdh.virginia.gov .
- [Certified Water Well System Providers and Licensed Well Drillers](#). VDH provides information on certified providers and drillers but does not endorse any particular provider or driller.

VDH does not have a program for testing private wells. Selection of a laboratory and payment for testing is the responsibility of the individual sampling the private well. There are no ongoing water quality standards for private wells; however, public water standards can be used to see if private well water is safe. If an exceedance is identified in a private well sample, it is advisable

for the well owner to consider additional testing and to consult with a drinking water professional or VDH.

Industrial Sites including Sunbright Foote Mineral Mine and Joy Global/Komatsu Mining

The VDH Public Health Toxicology Program met with the Virginia Department of Environmental Quality (VDEQ) Southwest Regional office and discussed several industrial sites in the counties of Scott, Wise, and Lee. Sites discussed were Tempur-Production, Joy Global, Sunbright Foote Mineral Mine, Virginia Hybrid Energy Center, and USP Lee, some of which manufacture various products (e.g., memory foam, mining equipment) or are no longer operational. In addition, Eastman Chemical Company in Tennessee was discussed. VDEQ keeps a record of permit data, violations (e.g., exceedances of allowable releases into the environment), and acute spills and known releases. While the dataset is small and is insufficient to link any of these facilities with potential health effects in the community, including any cancer risk in the community, no environmental concerns were noted by VDEQ. Additionally, initial mapping of cases did not suggest a notable pattern in relation to industrial sites or activity. Therefore, the team is not recommending further environmental testing at this time. If the need arises in the future to review environmental testing results related to these industrial facilities, VDH Public Health Toxicology Program (toxicology@vdh.virginia.gov) can help review.

Interpretation

The goal of this investigation by the VCR and VDH was to determine whether there was an increased incidence of pediatric cancer in Scott County, and if so, to assess whether additional investigation to determine a common cause, such as an environmental exposure, should be undertaken. Based on the cases reviewed, cancer types were not etiologically similar and could not be combined. Statistical analysis of the cases reviewed showed that pediatric cancer rates for the cancer types analyzed in Scott County are not elevated. Therefore, the cases assessed from 2014-2023 do not meet the definition of a cancer cluster. Given this, additional epidemiological investigation into a common environmental exposure was not pursued at this time.

Published literature and data were reviewed in response to community concern for potential environmental exposures impacting pediatric cancer rates, specifically radon, public drinking water, and industrial sites. Additionally, cases were mapped geographically to assess for potential shared environmental exposure. While Scott County has higher indoor radon results compared to other areas of Virginia per published data, a review of the literature revealed mixed conclusions regarding a possible association between radon exposure and increased risk of childhood leukemia. Review of public drinking water data did not identify environmental exposures of concern and confirmed that all community water systems in Scott County comply

with federal and state requirements. There was insufficient data to link industrial sites to potential health impacts, including increased cancer risk. Geographic mapping of cases did not identify a pattern concerning for a shared environmental exposure. Of note, private well testing for environmental contaminants is not directed by VDH and therefore these types of data were not reviewed. However, no common drinking water source was identified as part of this initial review, and it is not hypothesized to be a commonality among cases.

Limitations

There are several issues that make cancer cluster investigations challenging. In this case, analyzing a small number of cases in the identified geographic area of Scott County impacted the precision of the standardized incidence ratio (SIR), the standard statistical analysis used in cancer cluster investigations. This limitation was addressed by performing a second statistical analysis, the Fisher's Exact test, to assess whether cancer incidence was higher than expected, which did not show statistical significance (i.e., p-value >0.05). This cancer cluster investigation was limited to 2014-2023 and did not include an assessment of cases from 2024 and 2025, due to the lag in cancer registry data completeness for these years. This limitation will be addressed through ongoing review of cases as 2024 and 2025 data achieves completeness. Additionally, since cancers can have multiple causes, including genetic causes and one or more environmental exposures, identifying a causal exposure or risk factor across a group of cancers can be challenging.

Conclusion and Recommendations

The analysis found no evidence of a pediatric cancer cluster in Scott County for cases reviewed from 2014-2023. Review of published literature and existing data on public drinking water, industrial sites, and radon did not identify specific exposures of concern.

Given that the cases reviewed 2014-2023 do not represent a cancer cluster, VDH's recommendations are as follows

1. VDH recommends continued assessment of Scott County pediatric cancer cases occurring in 2024 and 2025 as part of this ongoing cancer cluster investigation. VDH expects 2024 cancer registry data to be 90% complete in early 2026, and will update this report with the analysis including preliminary 2024 data at that time. VDH expects 2025 cancer registry data to be 90% complete in early 2027, and pending the findings from analysis of 2024 data, intends to update this report with preliminary 2025 data in early 2027. VDH will coordinate with state environmental and toxicology experts to monitor and respond to any additional environmental concerns. VDH will further engage federal partners, such as the CDC and/or ATSDR and pursue epidemiological investigation of environmental exposures as appropriate and in alignment with existing guidance on

cancer cluster investigations. VDH intends to provide regular updates, likely quarterly, to the Scott County community as data analysis is completed for 2024 and 2025.

2. VDH recommends community members follow the VDH recommended schedule for testing [private well water](#) and EPA recommendation for testing [radon](#).
3. VDH does not recommend further epidemiological study of potential environmental exposures at this time, consistent with best public health practice for cancer cluster investigation.

VDH extends sincere thanks to the Scott County community members and local and state elected officials for their partnership throughout this investigation process. VDH acknowledges that each case included in this review represents a well-loved and cherished member of the Scott County community. In support of ensuring access to resources and supports, listed below are resources related to childhood cancer and environmental public health. Community members are encouraged to contact the Lenowisco Health District at scottcancerinfo@vdh.virginia.gov with any questions and concerns

Resources

ASK Childhood Cancer Foundation
<https://www.askccf.org/>

Blood Cancer United (formally Leukemia and Lymphoma Society):
<https://bloodcancerunited.org/>

Coalition Against Childhood Cancer
<https://www.cac2.org/>

National Cancer Institute: Childhood Cancers
<https://www.cancer.gov/types/childhood-cancers>

National Cancer Institute, Childhood Cancer Data Initiative
<https://www.cancer.gov/research/areas/childhood/childhood-cancer-data-initiative>

National Cancer Institute: State Cancer Profiles (includes childhood cancer data)
<https://statecancerprofiles.cancer.gov/>

VDH Directory of Licensed Septic System and Private Well Service Providers

<https://www.vdh.virginia.gov/environmental-health/onsite-sewage-water-services-updated/septic-system-and-private-well-service-providers/>

VDH Division of Onsite Water and Wastewater Services

<https://www.vdh.virginia.gov/environmental-health/environmental-health-services/onsite-sewage-water-services/>

VDH Indoor Radon Program

<https://www.vdh.virginia.gov/radiological-health/indoor-radon-program/>

References

1. CDC. Cancer Characteristics, Definitions, and Recent Investigations. Unusual Patterns of Cancer, the Environment, and Community Concerns. January 31, 2025. Accessed December 5, 2025. <https://www.cdc.gov/cancer-environment/php/guidelines/characteristics.html>
2. Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System, Mortality 2018-2023 on CDC WONDER Online Database, released in 2024. Accessed December 5, 2025. <http://wonder.cdc.gov/ucd-icd10-expanded.html>
3. Institute of Medicine (US) and National Research Council (US) National Cancer Policy Board. Childhood Cancer Survivorship: Improving Care and Quality of Life. In: Hewitt M, Weiner SL, Simone JV, eds. *The Epidemiology of Childhood Cancer*. National Academies Press (US); 2003. Accessed December 5, 2025. <https://www.ncbi.nlm.nih.gov/books/NBK221740/>
4. Cancer in Children and Adolescents - NCI. August 29, 2024. Accessed December 5, 2025. <https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet>
5. Dickie L, Johnson C, Adams S, Negoita S. *Solid Tumor Rules 2025 Update*; 2024.
6. US EPA O. Health Risk of Radon. August 14, 2014. Accessed December 12, 2025. <https://www.epa.gov/radon/health-risk-radon>
7. Tong J, Qin L, Cao Y, et al. Environmental radon exposure and childhood leukemia. *J Toxicol Environ Health B Crit Rev*. 2012;15(5):332-347. doi:10.1080/10937404.2012.689555
8. Bozigar M, Konstantinoudis G, Zilli Vieira CL, et al. Domestic radon exposure and childhood cancer risk by site and sex in 727 counties in the United States, 2001–2018. *Sci Total Environ*. 2024;954:176288. doi:10.1016/j.scitotenv.2024.176288
9. National Cancer Institute. Radon - Cancer-Causing Substances. March 20, 2015. Accessed December 5, 2025. <https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/radon>